Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: covidwho-20244201

RESUMEN

Millions of SARS-CoV-2 whole genome sequences have been generated to date. However, good quality data and adequate surveillance systems are required to contribute to meaningful surveillance in public health. In this context, the network of Spanish laboratories for coronavirus (RELECOV) was created with the main goal of promoting actions to speed up the detection, analyses, and evaluation of SARS-CoV-2 at a national level, partially structured and financed by an ECDC-HERA-Incubator action (ECDC/GRANT/2021/024). A SARS-CoV-2 sequencing quality control assessment (QCA) was developed to evaluate the network's technical capacity. QCA full panel results showed a lower hit rate for lineage assignment compared to that obtained for variants. Genomic data comprising 48,578 viral genomes were studied and evaluated to monitor SARS-CoV-2. The developed network actions showed a 36% increase in sharing viral sequences. In addition, analysis of lineage/sublineage-defining mutations to track the virus showed characteristic mutation profiles for the Delta and Omicron variants. Further, phylogenetic analyses strongly correlated with different variant clusters, obtaining a robust reference tree. The RELECOV network has made it possible to improve and enhance the genomic surveillance of SARS-CoV-2 in Spain. It has provided and evaluated genomic tools for viral genome monitoring and characterization that make it possible to increase knowledge efficiently and quickly, promoting the genomic surveillance of SARS-CoV-2 in Spain.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , España/epidemiología , Filogenia , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/genética , Genómica , Mutación
2.
Biosensors (Basel) ; 13(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2238776

RESUMEN

Even with the widespread uptake of vaccines, the SARS-CoV-2-induced COVID-19 pandemic continues to overwhelm many healthcare systems worldwide. Consequently, massive scale molecular diagnostic testing remains a key strategy to control the ongoing pandemic, and the need for instrument-free, economic and easy-to-use molecular diagnostic alternatives to PCR remains a goal of many healthcare providers, including WHO. We developed a test (Repvit) based on gold nanoparticles that can detect SARS-CoV-2 RNA directly from nasopharyngeal swab or saliva samples with a limit of detection (LOD) of 2.1 × 105 copies mL-1 by the naked eye (or 8 × 104 copies mL-1 by spectrophotometer) in less than 20 min, without the need for any instrumentation, and with a manufacturing price of <$1. We tested this technology on 1143 clinical samples from RNA extracted from nasopharyngeal swabs (n = 188), directly from saliva samples (n = 635; assayed by spectrophotometer) and nasopharyngeal swabs (n = 320) from multiple centers and obtained sensitivity values of 92.86%, 93.75% and 94.57% and specificities of 93.22%, 97.96% and 94.76%, respectively. To our knowledge, this is the first description of a colloidal nanoparticle assay that allows for rapid nucleic acid detection at clinically relevant sensitivity without the need for external instrumentation that could be used in resource-limited settings or for self-testing.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , Colorimetría , Saliva , ARN Viral , SARS-CoV-2 , Oro , Pandemias , Nasofaringe , Manejo de Especímenes
3.
Sci Rep ; 12(1): 5936, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1784018

RESUMEN

Without any realistic prospect of comprehensive global vaccine coverage and lasting immunity, control of pandemics such as COVID-19 will require implementation of large-scale, rapid identification and isolation of infectious individuals to limit further transmission. Here, we describe an automated, high-throughput integrated screening platform, incorporating saliva-based loop-mediated isothermal amplification (LAMP) technology, that is designed for population-scale sensitive detection of infectious carriers of SARS-CoV-2 RNA. Central to this surveillance system is the "Sentinel" testing instrument, which is capable of reporting results within 25 min of saliva sample collection with a throughput of up to 3840 results per hour. It incorporates continuous flow loading of samples at random intervals to cost-effectively adjust for fluctuations in testing demand. Independent validation of our saliva-based RT-LAMP technology on an automated LAMP instrument coined the "Sentinel", found 98.7% sensitivity, 97.6% specificity, and 98% accuracy against a RT-PCR comparator assay, confirming its suitability for surveillance screening. This Sentinel surveillance system offers a feasible and scalable approach to complement vaccination, to curb the spread of COVID-19 variants, and control future pandemics to save lives.


Asunto(s)
COVID-19 , Saliva , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/genética , Saliva/química , Sensibilidad y Especificidad
4.
Surf Interfaces ; 27: 101494, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1510324

RESUMEN

The development of antimicrobial surfaces has become a high priority in recent times. There are two ongoing worldwide health crises: the COVID-19 pandemic provoked by the SARS-CoV-2 virus and the antibiotic-resistant diseases provoked by bacteria resistant to antibiotic-based treatments. The need for antimicrobial surfaces against bacteria and virus is a common factor to both crises. Most extended strategies to prevent bacterial associated infections rely on chemical based-approaches based on surface coatings or biocide encapsulated agents that release chemical agents. A critical limitation of these chemistry-based strategies is their limited effectiveness in time while grows the concerns about the long-term toxicity on human beings and environment pollution. An alternative strategy to prevent bacterial attachment consists in the introduction of physical modification to the surface. Pursuing this chemistry-independent strategy, we present a fabrication process of surface topographies [one-level (micro, nano) and hierarchical (micro+nano) structures] in polypropylene (PP) substrates and discuss how wettability, topography and patterns size influence on its antibacterial properties. Using nanoimprint lithography as patterning technique, we report as best results 82 and 86% reduction in the bacterial attachment of E. coli and S. aureus for hierarchically patterned samples compared to unpatterned reference surfaces. Furthermore, we benchmark the mechanical properties of the patterned PP surfaces against commercially available antimicrobial films and provide evidence for the patterned PP films to be suitable candidates for use as antibacterial functional surfaces in a hospital environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA